Copied to
clipboard

G = C5xC42:S3order 480 = 25·3·5

Direct product of C5 and C42:S3

direct product, non-abelian, soluble, monomial

Aliases: C5xC42:S3, C42:(C5xS3), (C4xC20):2S3, C22.(C5xS4), C42:C3:2C10, (C2xC10).1S4, (C5xC42:C3):6C2, SmallGroup(480,254)

Series: Derived Chief Lower central Upper central

C1C42C42:C3 — C5xC42:S3
C1C22C42C42:C3C5xC42:C3 — C5xC42:S3
C42:C3 — C5xC42:S3
C1C5

Generators and relations for C5xC42:S3
 G = < a,b,c,d,e | a5=b4=c4=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=ebe=c, dcd-1=b-1c-1, ece=b, ede=d-1 >

Subgroups: 228 in 48 conjugacy classes, 10 normal (all characteristic)
Quotients: C1, C2, C5, S3, C10, S4, C5xS3, C42:S3, C5xS4, C5xC42:S3
3C2
12C2
16C3
3C4
3C4
6C4
6C22
16S3
3C10
12C10
16C15
3D4
3C2xC4
3Q8
6C8
6C2xC4
6D4
4A4
3C20
3C20
6C20
6C2xC10
16C5xS3
3C4oD4
3M4(2)
4S4
3C5xD4
3C5xQ8
3C2xC20
6C2xC20
6C40
6C5xD4
4C5xA4
3C4wrC2
3C5xC4oD4
3C5xM4(2)
4C5xS4
3C5xC4wrC2

Smallest permutation representation of C5xC42:S3
On 60 points
Generators in S60
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(1 58 36 20)(2 59 37 16)(3 60 38 17)(4 56 39 18)(5 57 40 19)(6 12)(7 13)(8 14)(9 15)(10 11)(21 46 29 55)(22 47 30 51)(23 48 26 52)(24 49 27 53)(25 50 28 54)(31 44)(32 45)(33 41)(34 42)(35 43)
(1 58 36 20)(2 59 37 16)(3 60 38 17)(4 56 39 18)(5 57 40 19)(6 45 12 32)(7 41 13 33)(8 42 14 34)(9 43 15 35)(10 44 11 31)(21 29)(22 30)(23 26)(24 27)(25 28)(46 55)(47 51)(48 52)(49 53)(50 54)
(1 23 32)(2 24 33)(3 25 34)(4 21 35)(5 22 31)(6 58 48)(7 59 49)(8 60 50)(9 56 46)(10 57 47)(11 19 51)(12 20 52)(13 16 53)(14 17 54)(15 18 55)(26 45 36)(27 41 37)(28 42 38)(29 43 39)(30 44 40)
(1 36)(2 37)(3 38)(4 39)(5 40)(6 52)(7 53)(8 54)(9 55)(10 51)(11 47)(12 48)(13 49)(14 50)(15 46)(16 59)(17 60)(18 56)(19 57)(20 58)(21 43)(22 44)(23 45)(24 41)(25 42)(26 32)(27 33)(28 34)(29 35)(30 31)

G:=sub<Sym(60)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,58,36,20)(2,59,37,16)(3,60,38,17)(4,56,39,18)(5,57,40,19)(6,12)(7,13)(8,14)(9,15)(10,11)(21,46,29,55)(22,47,30,51)(23,48,26,52)(24,49,27,53)(25,50,28,54)(31,44)(32,45)(33,41)(34,42)(35,43), (1,58,36,20)(2,59,37,16)(3,60,38,17)(4,56,39,18)(5,57,40,19)(6,45,12,32)(7,41,13,33)(8,42,14,34)(9,43,15,35)(10,44,11,31)(21,29)(22,30)(23,26)(24,27)(25,28)(46,55)(47,51)(48,52)(49,53)(50,54), (1,23,32)(2,24,33)(3,25,34)(4,21,35)(5,22,31)(6,58,48)(7,59,49)(8,60,50)(9,56,46)(10,57,47)(11,19,51)(12,20,52)(13,16,53)(14,17,54)(15,18,55)(26,45,36)(27,41,37)(28,42,38)(29,43,39)(30,44,40), (1,36)(2,37)(3,38)(4,39)(5,40)(6,52)(7,53)(8,54)(9,55)(10,51)(11,47)(12,48)(13,49)(14,50)(15,46)(16,59)(17,60)(18,56)(19,57)(20,58)(21,43)(22,44)(23,45)(24,41)(25,42)(26,32)(27,33)(28,34)(29,35)(30,31)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,58,36,20)(2,59,37,16)(3,60,38,17)(4,56,39,18)(5,57,40,19)(6,12)(7,13)(8,14)(9,15)(10,11)(21,46,29,55)(22,47,30,51)(23,48,26,52)(24,49,27,53)(25,50,28,54)(31,44)(32,45)(33,41)(34,42)(35,43), (1,58,36,20)(2,59,37,16)(3,60,38,17)(4,56,39,18)(5,57,40,19)(6,45,12,32)(7,41,13,33)(8,42,14,34)(9,43,15,35)(10,44,11,31)(21,29)(22,30)(23,26)(24,27)(25,28)(46,55)(47,51)(48,52)(49,53)(50,54), (1,23,32)(2,24,33)(3,25,34)(4,21,35)(5,22,31)(6,58,48)(7,59,49)(8,60,50)(9,56,46)(10,57,47)(11,19,51)(12,20,52)(13,16,53)(14,17,54)(15,18,55)(26,45,36)(27,41,37)(28,42,38)(29,43,39)(30,44,40), (1,36)(2,37)(3,38)(4,39)(5,40)(6,52)(7,53)(8,54)(9,55)(10,51)(11,47)(12,48)(13,49)(14,50)(15,46)(16,59)(17,60)(18,56)(19,57)(20,58)(21,43)(22,44)(23,45)(24,41)(25,42)(26,32)(27,33)(28,34)(29,35)(30,31) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(1,58,36,20),(2,59,37,16),(3,60,38,17),(4,56,39,18),(5,57,40,19),(6,12),(7,13),(8,14),(9,15),(10,11),(21,46,29,55),(22,47,30,51),(23,48,26,52),(24,49,27,53),(25,50,28,54),(31,44),(32,45),(33,41),(34,42),(35,43)], [(1,58,36,20),(2,59,37,16),(3,60,38,17),(4,56,39,18),(5,57,40,19),(6,45,12,32),(7,41,13,33),(8,42,14,34),(9,43,15,35),(10,44,11,31),(21,29),(22,30),(23,26),(24,27),(25,28),(46,55),(47,51),(48,52),(49,53),(50,54)], [(1,23,32),(2,24,33),(3,25,34),(4,21,35),(5,22,31),(6,58,48),(7,59,49),(8,60,50),(9,56,46),(10,57,47),(11,19,51),(12,20,52),(13,16,53),(14,17,54),(15,18,55),(26,45,36),(27,41,37),(28,42,38),(29,43,39),(30,44,40)], [(1,36),(2,37),(3,38),(4,39),(5,40),(6,52),(7,53),(8,54),(9,55),(10,51),(11,47),(12,48),(13,49),(14,50),(15,46),(16,59),(17,60),(18,56),(19,57),(20,58),(21,43),(22,44),(23,45),(24,41),(25,42),(26,32),(27,33),(28,34),(29,35),(30,31)]])

50 conjugacy classes

class 1 2A2B 3 4A4B4C4D5A5B5C5D8A8B10A10B10C10D10E10F10G10H15A15B15C15D20A···20H20I20J20K20L20M20N20O20P40A···40H
order1223444455558810101010101010101515151520···20202020202020202040···40
size1312323361211111212333312121212323232323···366661212121212···12

50 irreducible representations

dim111122333366
type+++++
imageC1C2C5C10S3C5xS3S4C42:S3C5xS4C5xC42:S3C42:S3C5xC42:S3
kernelC5xC42:S3C5xC42:C3C42:S3C42:C3C4xC20C42C2xC10C5C22C1C5C1
# reps1144142481614

Matrix representation of C5xC42:S3 in GL3(F241) generated by

9800
0980
0098
,
17700
02400
00177
,
17700
01770
00240
,
010
001
100
,
24000
00240
02400
G:=sub<GL(3,GF(241))| [98,0,0,0,98,0,0,0,98],[177,0,0,0,240,0,0,0,177],[177,0,0,0,177,0,0,0,240],[0,0,1,1,0,0,0,1,0],[240,0,0,0,0,240,0,240,0] >;

C5xC42:S3 in GAP, Magma, Sage, TeX

C_5\times C_4^2\rtimes S_3
% in TeX

G:=Group("C5xC4^2:S3");
// GroupNames label

G:=SmallGroup(480,254);
// by ID

G=gap.SmallGroup(480,254);
# by ID

G:=PCGroup([7,-2,-5,-3,-2,2,-2,2,422,1683,185,360,1054,1173,102,15125,1027,1784]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^4=c^4=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=e*b*e=c,d*c*d^-1=b^-1*c^-1,e*c*e=b,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of C5xC42:S3 in TeX

׿
x
:
Z
F
o
wr
Q
<